Control Systems I

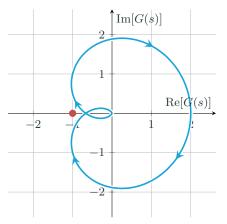
Robustness

Colin Jones

Laboratoire d'Automatique

Uncertain Delay

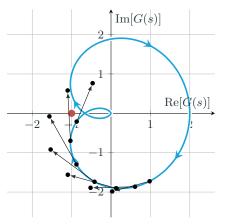
Designed for system G(s), but system in real-world $G^{\prime}(s)=G(s)e^{-s}$



- Impact of delay : Phase delay of $-\omega$
- · Original system is stable, delayed system is not

Uncertain Delay

Designed for system G(s), but system in real-world $G^{\prime}(s)=G(s)e^{-s}$

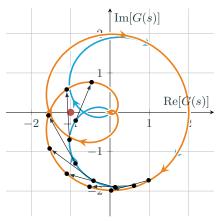


- Impact of delay : Phase delay of $-\omega$
- · Original system is stable, delayed system is not

2

Uncertain Delay

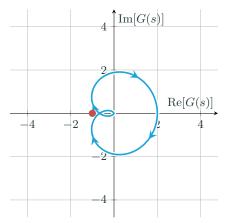
Designed for system G(s), but system in real-world $G^{\prime}(s)=G(s)e^{-s}$



- Impact of delay : Phase delay of $-\omega$
- · Original system is stable, delayed system is not

Example - Uncertain Gain

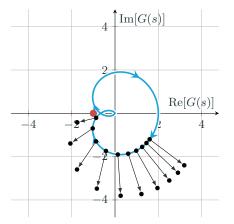
Design for system G(s), but in real-world we get $G'(s) = \alpha G(s)$



- · Impact of uncertain gain : Scaling
- · Original system is stable, system with larger gain is not

Example - Uncertain Gain

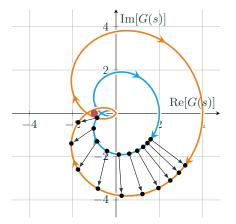
Design for system G(s), but in real-world we get $G'(s) = \alpha G(s)$



- Impact of uncertain gain : Scaling
- · Original system is stable, system with larger gain is not

Example - Uncertain Gain

Design for system G(s), but in real-world we get $G'(s) = \alpha G(s)$



- · Impact of uncertain gain : Scaling
- · Original system is stable, system with larger gain is not

Robustness

The idea: The farther the 'nominal' Nyquist curve is from the -1 point, the more likely the real system will be stable.

The various margins measure distance in terms of some common terms:

- · Uncertain gain
- · Uncertain phase
- Uncertain delay

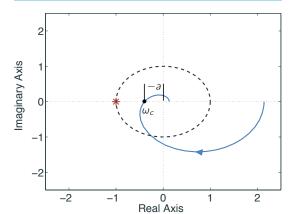
Gain Margin

The *gain margin* is the number 1/a, where

$$a = \min_{\omega} K(j\omega)G(j\omega)$$

s.t. Im $K(j\omega)G(j\omega) = 0$

i.e., smallest negative crossing of the real axis



Expressed in decibels

$$-20\log_{10}a>0$$

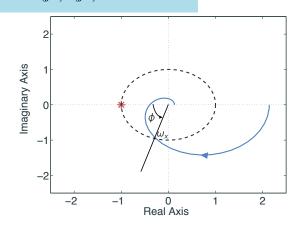
- Amount that gain can increase while stable
- Between 4dB and 12dB generally considered safe
- GM < 1 (0dB) means that the closed-loop system is unstable, GM > 1 (0dB) that it is stable

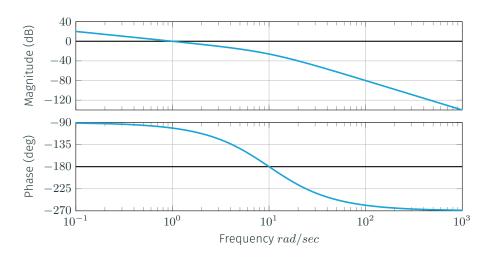
Phase Margin

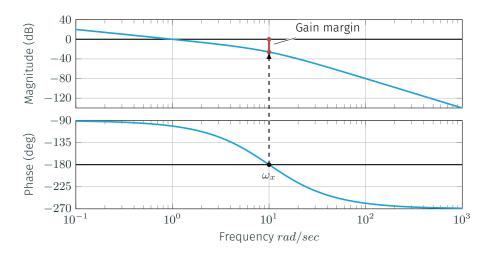
The $\it phase\ margin\ \phi$ is the smallest increase in phase that will cause instability

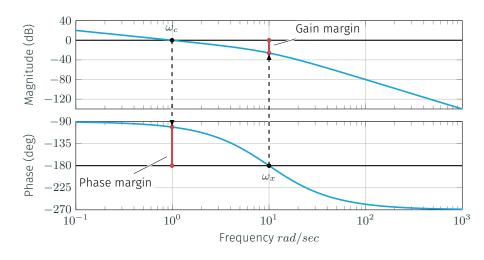
$$\phi = \min_{\phi,\omega} \phi$$
 s.t. $K(j\omega)G(j\omega)e^{j\phi} = -1$

- Usually expressed in degrees
- Between 30° and 60° generally considered safe









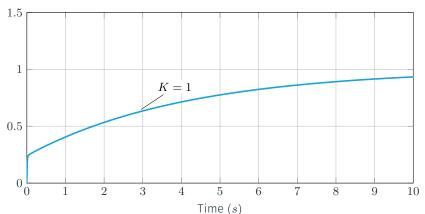
Procedure:

- 1. Find frequency ω_c that system passes 0dB, from magnitude plot
- 2. Find frequency ω_x that system passes -180° , from the phase plot
- 3. Gain margin = $-20\log_{10}|K(j\omega_x)G(j\omega_x)|$ dB
- 4. Phase margin = $\angle K(j\omega_c)G(j\omega_c)-180$ in degrees

Gain and phase margin positive \rightarrow stable

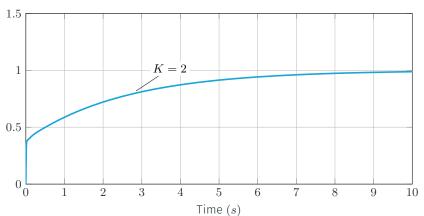
$$G(s) = \frac{8.88 \cdot 10^8 (s^2 + 780s + 1.69 \cdot 10^6)}{(s + 3000)(s + 1000)(s + 100)(s^2 + 50s + 6.25 \cdot 10^6)}$$

$$K(s) = K \cdot \left(1 + \frac{1}{s}\right)$$



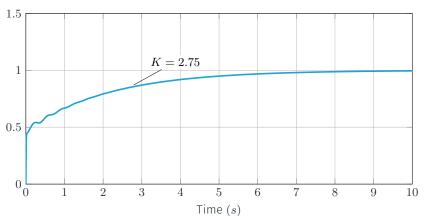
$$G(s) = \frac{8.88 \cdot 10^8 (s^2 + 780s + 1.69 \cdot 10^6)}{(s + 3000)(s + 1000)(s + 1000)(s^2 + 50s + 6.25 \cdot 10^6)}$$

$$K(s) = K \cdot \left(1 + \frac{1}{s}\right)$$



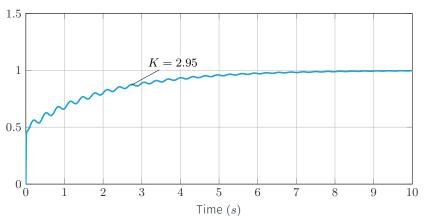
$$G(s) = \frac{8.88 \cdot 10^8 (s^2 + 780s + 1.69 \cdot 10^6)}{(s + 3000)(s + 1000)(s + 1000)(s^2 + 50s + 6.25 \cdot 10^6)}$$

$$K(s) = K \cdot \left(1 + \frac{1}{s}\right)$$



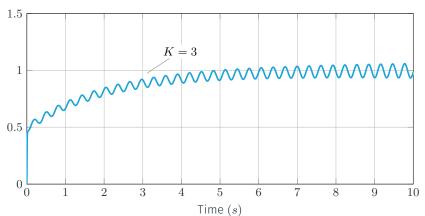
$$G(s) = \frac{8.88 \cdot 10^8 (s^2 + 780s + 1.69 \cdot 10^6)}{(s + 3000)(s + 1000)(s + 1000)(s^2 + 50s + 6.25 \cdot 10^6)}$$

$$K(s) = K \cdot \left(1 + \frac{1}{s}\right)$$

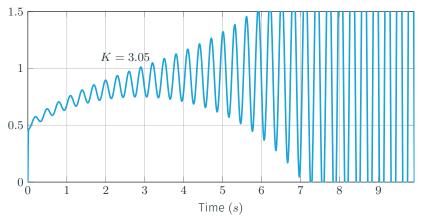


$$G(s) = \frac{8.88 \cdot 10^8 (s^2 + 780s + 1.69 \cdot 10^6)}{(s + 3000)(s + 1000)(s + 100)(s^2 + 50s + 6.25 \cdot 10^6)}$$

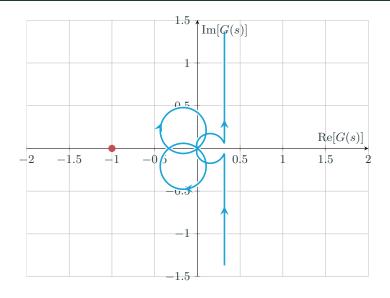
$$K(s) = K \cdot \left(1 + \frac{1}{s}\right)$$

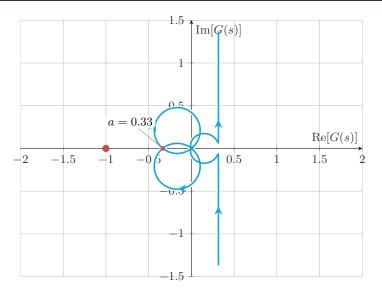


$$G(s) = \frac{8.88 \cdot 10^8 (s^2 + 780s + 1.69 \cdot 10^6)}{(s + 3000)(s + 1000)(s + 100)(s^2 + 50s + 6.25 \cdot 10^6)}$$
$$K(s) = K \cdot \left(1 + \frac{1}{s}\right)$$

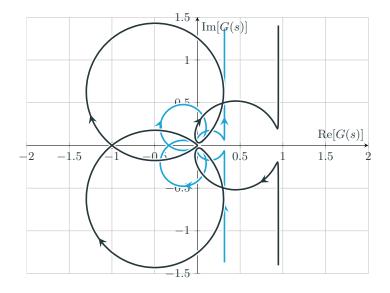


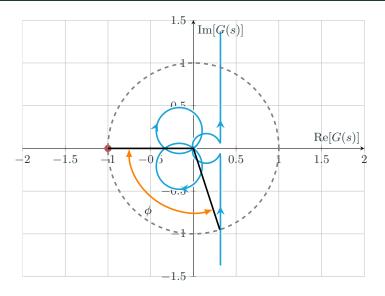
System becomes unstable somewhere between $K=3\ \mathrm{and}\ K=3.05$





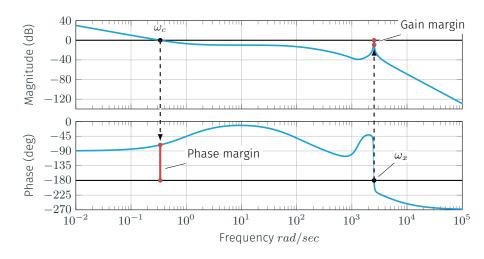
 $\label{eq:Gain margin = } \begin{array}{l} -20\log_{10}a = 9.63dB \\ \\ \text{System becomes unstable at a gain of } 1/a = 3.03 \end{array}$



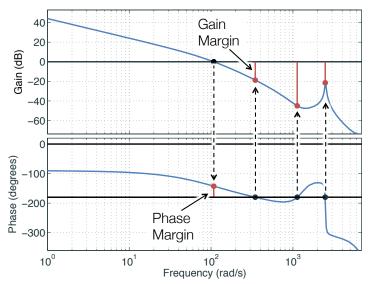


Phase margin = 108 degrees

Gain and Phase Margins: Bode



Gain and Phase Margins: Bode



Choose the 'first to be unstable' if there are multiple crossings

Margins - Summary

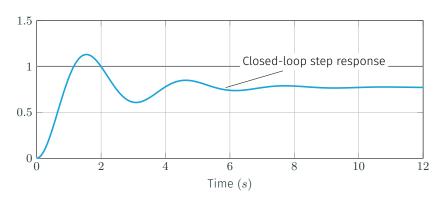
- Margins measure how far from stability the closed-loop system is in terms of a single uncertain parameter
 - Phase
 - · Gain
 - · Delay
- Many applications specify minimum phase and gain margins for safety
- In later lectures we will look at dynamic controllers that shape the frequency response so that we have good margins

Steady State Errors

Steady-State Offset

$$G(s) = \frac{3.4}{s^2 + s + 1}$$

$$K(s) = 1$$



Steady-State Offset

$$G(s) = \frac{3.4}{s^2 + s + 1} \qquad K(s) = 1$$

Time (s)

Error

K(s) = 1

10

Stable does not mean that the output tracks the reference!

12

Steady-State Offset

$$R(s) \longrightarrow K(s) \longrightarrow G(s) \longrightarrow Y(s)$$

$$E(s) = \frac{1}{1 + K(s)G(s)}R(s)$$
$$= S(s)R(s)$$

Theorem

Final Value Theorem

$$\lim_{t \to \infty} w(t) = \lim_{s \to 0} sW(s)$$

If poles of sW(s) are in the left half plane

If
$$r(t)=1, t\geq 0$$
, then $R(S)=1/s$
$$\lim_{t\to\infty} e(t)=\lim_{s\to 0} s\frac{1}{1+K(s)G(s)}\cdot \frac{1}{s}=\lim_{s\to 0} \frac{1}{1+K(s)G(s)}=????$$

- Not infinite because $K(s)G(s) \neq -1$
- · Called this the steady-state offset or steady-state error
- · Conditions for the steady-state offset to be zero?

System Type and Open-Loop Steady-State Gain

Suppose that the open-loop transfer function has q poles at s=0

$$K(s)G(s) = \frac{B(s)}{s^q A(s)}$$

where A and B are polynomials.

The number q is called the type or the class of the open-loop system.

The *open-loop steady-state gain* of the system K(s)G(s) is

$$\gamma := \lim_{s \to 0} s^q K(s) G(s) = \frac{B(0)}{A(0)}$$

Type 0 System Response to a Step Command

Suppose we have a type 0 system

$$K(s)G(s) = \frac{B(s)}{A(s)}$$

and we apply a step input

$$R(s) = \frac{1}{s}$$

Type 0 System Response to a Step Command

Suppose we have a type 0 system

$$K(s)G(s) = \frac{B(s)}{A(s)}$$

and we apply a step input

$$R(s) = \frac{1}{s}$$

The steady-state error for the closed-loop system will be

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} s \frac{1}{1 + K(s)G(s)} \cdot \frac{1}{s}$$
$$= \frac{1}{1 + \gamma}$$

Type 1 System Response to a Step Command

Suppose we have a type 1 system

$$K(s)G(s) = \frac{B(s)}{sA(s)}$$

and we apply a step input

$$R(s) = \frac{1}{s}$$

Type 1 System Response to a Step Command

Suppose we have a type 1 system

$$K(s)G(s) = \frac{B(s)}{sA(s)}$$

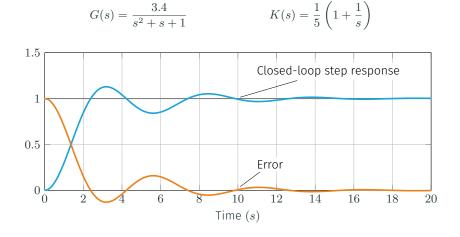
and we apply a step input

$$R(s) = \frac{1}{s}$$

The steady-state error for the closed-loop system will be

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} s \frac{1}{1 + K(s)G(s)} \cdot \frac{1}{s}$$
$$= \lim_{s \to 0} \frac{s}{s + \frac{B(s)}{A(s)}}$$
$$= 0$$

The steady-state error will be zero for all step inputs and systems!



Zero steady-state offset

Suppose we have a type 1 system

$$K(s)G(s) = \frac{B(s)}{sA(s)}$$

and we apply a *ramp input* r(t) = t

$$R(s) = \frac{1}{s^2}$$

Suppose we have a type 1 system

$$K(s)G(s) = \frac{B(s)}{sA(s)}$$

and we apply a *ramp input* r(t) = t

$$R(s) = \frac{1}{s^2}$$

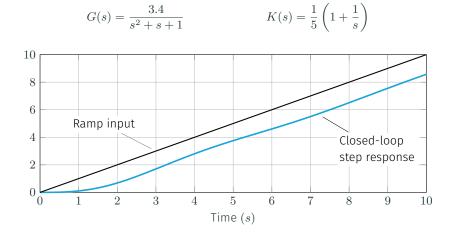
The steady-state error for the closed-loop system will be

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} s \cdot \frac{1}{1 + K(s)G(s)} \cdot \frac{1}{s^2}$$

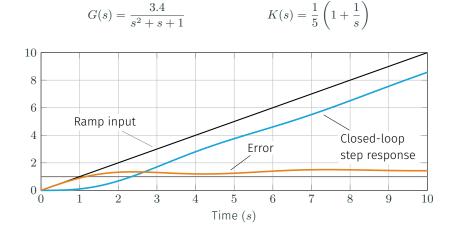
$$= \lim_{s \to 0} \frac{1}{1 + \frac{B(s)}{sA(s)}} \cdot \frac{1}{s}$$

$$= \frac{1}{\gamma}$$

Non-zero steady-state error.



Constant steady-state offset



Constant steady-state offset

Suppose we have a type 1 system

$$K(s)G(s) = \frac{B(s)}{sA(s)}$$

and we apply a *parabolic input* $r(t) = t^2$

$$R(s) = \frac{2}{s^3}$$

Suppose we have a type 1 system

$$K(s)G(s) = \frac{B(s)}{sA(s)}$$

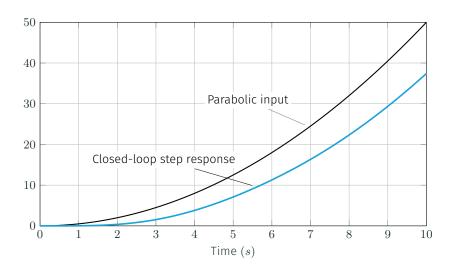
and we apply a *parabolic input* $r(t) = t^2$

$$R(s) = \frac{2}{s^3}$$

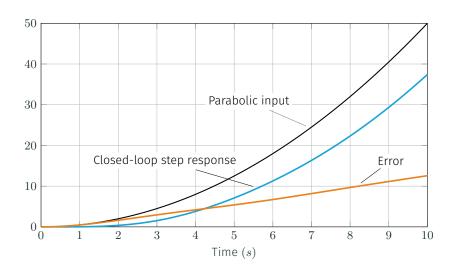
The error is

$$E(s) = \frac{1}{1 + K(s)G(s)} \cdot \frac{2}{s^3}$$
$$= \frac{sB(s)}{sA(s) + B(s)} \cdot \frac{2}{s^3}$$
$$= \frac{B(s)}{sA(s) + B(s)} \cdot \frac{2}{s^2}$$

Cannot apply final-value theorem because there is more than one pole at $0 \to \text{Implies}$ that the error is either unbounded, or oscillates



Infinite steady-state offset



Infinite steady-state offset

Steady-State Errors by System Type

Type
$$r(t)=1$$
 $r(t)=t$ $r(t)=t^2$

$$0 \quad \frac{1}{1+\gamma} \quad \infty \quad \infty$$

$$1 \quad 0 \quad \frac{1}{\gamma} \quad \infty$$

$$2 \quad 0 \quad 0 \quad \frac{1}{\gamma}$$

Basic idea: Must have more integrators than the signal you're trying to track

Why not just add hundreds of integrators, and track anything?!

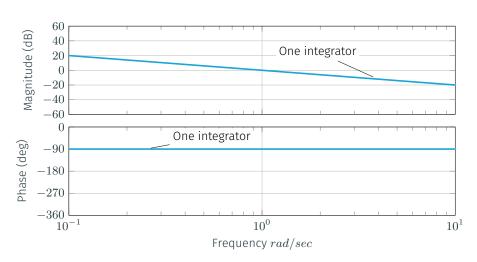
Steady-State Errors by System Type - by the Book

The book uses a slightly different notation:

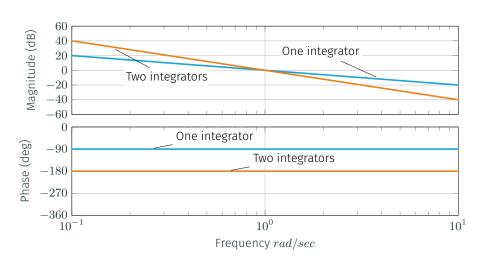
Туре	r(t) = 1	r(t) = t	$r(t) = t^2$
	Step (position)	Ramp (velocity)	Parabola (acceleration)
0	$\frac{1}{1+K_p}$	∞	∞
1	0	$\frac{1}{K_v}$	∞
2	0	0	$\frac{1}{K_a}$
	$K_p = \lim_{s \to 0} K(s)G(s)$ $K_v = \lim_{s \to 0} sK(s)G(s)$		Type 0
			Type 1
	$K_a = \lim_{s \to 0} s^2 K(s) G(s)$		Type 2

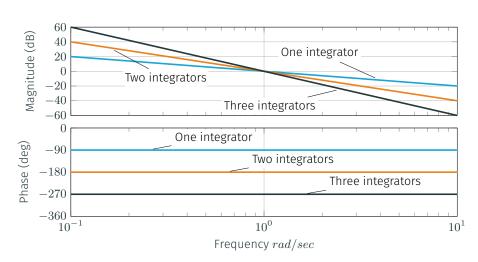
The book differentiates constants between position, velocity and acceleration. We just use γ for all of them.

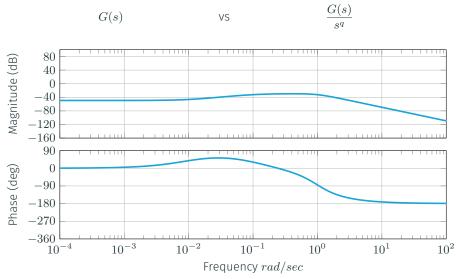
$$\frac{1}{s^q} \to (j\omega)^{-q}$$

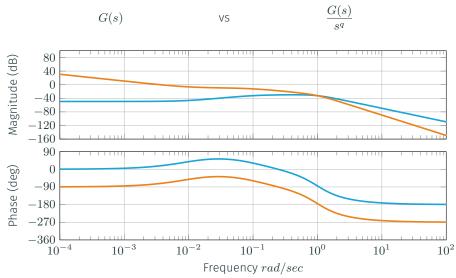


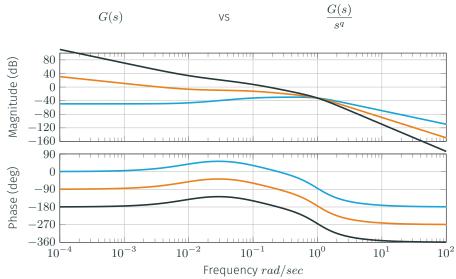
$$\frac{1}{s^q} \to (j\omega)^{-q}$$

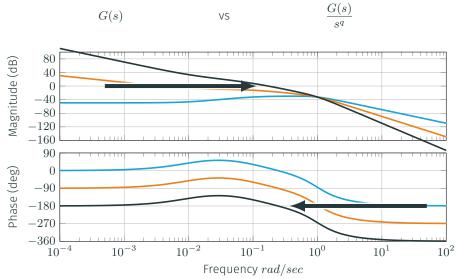


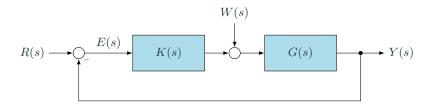












System response with respect to a disturbance $\boldsymbol{w}(t)$ is:

$$E(s) = \frac{G(s)}{1 + K(s)G(s)}W(s)$$

What are the conditions for zero steady-state offset with respect to a constant disturbance?

Suppose the system has q integrators, and K has none

$$G(s) = \frac{B(s)}{s^q A(s)}$$

Suppose the system has q integrators, and K has none

$$G(s) = \frac{B(s)}{s^q A(s)}$$

The error is:

$$E(s) = \frac{G(s)}{1 + K(s)G(s)}W(s)$$
$$= \frac{B(s)}{s^q A(s) + K(s)B(s)} \cdot \frac{1}{s}$$

Then the steady-state error is:

$$\lim_{s \to 0} sE(s) = \frac{1}{K(0)}$$

Integrators in the system do not reject disturbances!

Integrators in the Controller

Suppose the controller K has r integrators

$$K(s) = \frac{S(s)}{s^r R(s)}$$

Integrators in the Controller

Suppose the controller K has r integrators

$$K(s) = \frac{S(s)}{s^r R(s)}$$

The error is:

$$E(s) = \frac{B(s)}{s^q A(s) + K(s)B(s)} \cdot \frac{1}{s}$$
$$= s^r \frac{B(s)R(s)}{s^r s^q A(s)R(s) + S(s)B(s)} \cdot \frac{1}{s}$$

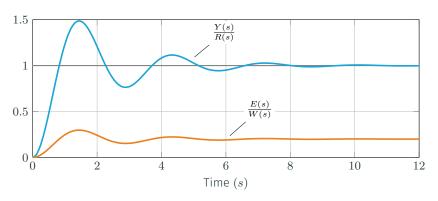
The controller's integrators do reject the disturbance:

- One pole at $0 \rightarrow$ rejects constant disturbance
- Two poles at $0 \rightarrow$ rejects ramp disturbance
- . :
- etc

Example

$$G(s) = \frac{1}{s(s+1)} \qquad K(s) = 5$$

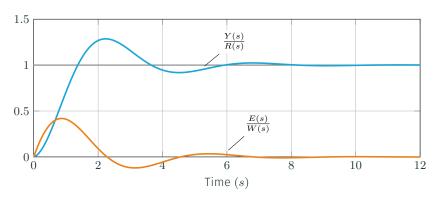
- · System has an integrator
- · Controller doesn't



Example

$$G(s) = \frac{1}{s+1} K(s) = 0.1 + \frac{2.2}{s}$$

- · System doesn't have an integrator
- · Controller does (PI)



Waterbed Effect

Dynamic Disturbance Rejection

We want to reject 'complex' signals.

Consider a sinusoid

$$r(t) = \sin(\omega t) ,$$

or a mix of sinusoids.

The rejection of these signals, or the sensitivity to them, is given by the sensitivity function

$$\left| \frac{1}{1 + K(j\omega)G(j\omega)} \right| = |\mathcal{S}(j\omega)|$$

Limitations of Disturbance Rejection

Theorem Bode's Integral Formula

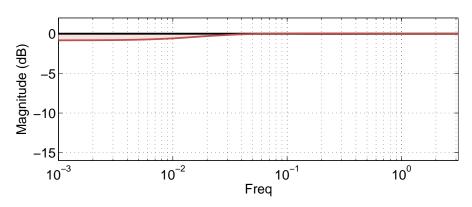
Assume we have a closed-loop stable system with open-loop unstable poles p_i , $i=1,2,\ldots,P$ and a strictly proper open-loop transfer function K(s)G(s). The sensitivity function satisfies the condition

$$\int_0^\infty \log |\mathcal{S}(j\omega)| d\omega = \pi \sum_{i=1}^P \operatorname{Re}(p_i)$$

This is a fundamental limit on how well the system can perform:

- If we damp noise for some frequencies $|\mathcal{S}(j\omega)|<1$, then we must *amplify* it $|\mathcal{S}(j\omega)|>1$ at others!
- · This is called the waterbed effect
- Harder to get good disturbance rejection behaviour out of unstable systems (those with many unstable poles)

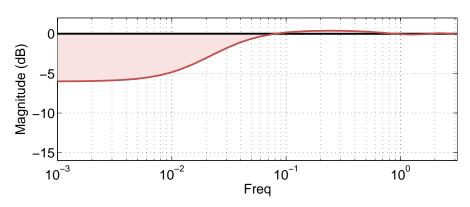
$$K(s)G(s) = K_p \frac{s^2 - 133.3s + 5926}{(s+1)(s^2 + 133.3s + 5926)}$$



$$K_p = 0.1$$

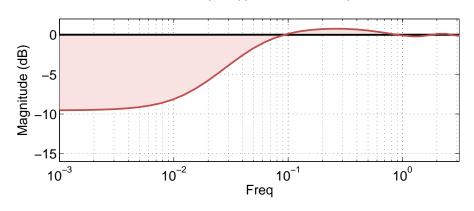
$$\max_{\omega} \mathcal{S}(j\omega) = 0.04dB$$

$$K(s)G(s) = K_p \frac{s^2 - 133.3s + 5926}{(s+1)(s^2 + 133.3s + 5926)}$$



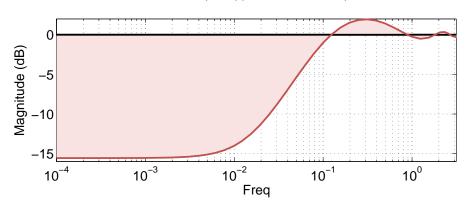
$$K_p = 1$$
 $\max_{\omega} S(j\omega) = 0.4dB$

$$K(s)G(s) = K_p \frac{s^2 - 133.3s + 5926}{(s+1)(s^2 + 133.3s + 5926)}$$



$$K_p = 2$$
 $\max_{\omega} S(j\omega) = 0.8dB$

$$K(s)G(s) = K_p \frac{s^2 - 133.3s + 5926}{(s+1)(s^2 + 133.3s + 5926)}$$



$$K_p = 5$$
 $\max_{\omega} S(j\omega) = 2dB$

Summary

Robustness: The farther the 'nominal' Nyquist curve is from the -1 point, the more likely the real system will be stable.

"Margins" measure how far your system is from unstable

- · Gain margin
- · Phase margin
- · Delay margin

Steady-state offset

Need to have as many integrators in your controller as are in the signal to track
 / reject if you want zero steady-state error

Waterbed effect

- There is a fundamental limit to how well a controller can work
- · Cannot improve noise rejection / tracking at all frequencies