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Uncertain Delay

Designed for system G(s), but system in real-world G’ (s) = G(s)e™*

Im|[G(s)]

- Impact of delay : Phase delay of —w
- Original system is stable, delayed system is not



Uncertain Delay

Designed for system G(s), but system in real-world G’ (s) = G(s)e™*

Im|[G(s)]

- Impact of delay : Phase delay of —w
- Original system is stable, delayed system is not



Uncertain Delay

Designed for system G(s), but system in real-world G’ (s) = G(s)e™*

- Impact of delay : Phase delay of —w
- Original system is stable, delayed system is not



Example - Uncertain Gain

Design for system G(s), but in real-world we get G'(s) = aG(s)
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- Impact of uncertain gain : Scaling
- Original system is stable, system with larger gain is not
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Example - Uncertain Gain

Design for system G(s), but in real-world we get G'(s) = aG(s)

4 JIm(G(s)]

- Impact of uncertain gain : Scaling
- Original system is stable, system with larger gain is not



The idea: The farther the ‘nominal’ Nyquist curve is from the —1 point, the more
likely the real system will be stable.

The various margins measure distance in terms of some common terms:

- Uncertain gain
- Uncertain phase

- Uncertain delay



The gain margin is the number 1/a, where * Expressed in decibels

a = min K (jw)G(jw) —20log;pa >0

st Im K (jw)G(jw) = 0 - Amount that gain can
increase while stable
i.e., smallest negative crossing of the real axis . Between 4dB and 12dB
‘ ‘ : ‘ generally considered safe
2 1+ GM <1 (0dB) means that the
closed-loop system is
2 1) unstable, GM > 1 (0dB) that it
< is stable
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Phase Margin

The phase margin ¢ is the smallest increase in * Usually expressed in degrees

phase that will cause instability - Between 30° and 60°
generally considered safe
¢ = I};in ¢

st K(jw)G(jw)e® = -1

Imaginary Axis

Real Axis 6



Phase and Gain Margin on Bode Plot
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Phase and Gain Margin on Bode Plot
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Phase and Gain Margin on Bode Plot
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Phase and Gain Margin on Bode Plot

Procedure:

1. Find frequency w. that system passes 0dB, from magnitude plot
2. Find frequency w, that system passes —180°, from the phase plot
3. Gain margin = —201log, | K (jw: )G (jws)|dB

4. Phase margin = ZK (jw.)G(jw.) — 180 in degrees

Gain and phase margin positive — stable



Example: AFM

8.88 - 10%(s + 780s + 1.69 - 10°)
(5 4+ 3000)(s + 1000)(s + 100)(s2 + 50s + 6.25 - 106)

K(s):K~(1+%)

G(s) =

1.5
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Example: AFM
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Example: AFM
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Example: AFM

8.88 - 10%(s + 780s + 1.69 - 10°)
(5 4+ 3000)(s + 1000)(s + 100)(s2 + 50s + 6.25 - 106)

K(s):K~(1+%)

G(s) =
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Example: AFM

8.88 - 10%(s + 780s + 1.69 - 10°)
(5 4+ 3000)(s + 1000)(s + 100)(s2 + 50s + 6.25 - 106)

K(s):K-(l—i—%)

1.5 T T H W

G(s) =

Time (s)

System becomes unstable somewhere between K = 3 and K = 3.05 9



Gain and Phase Margins : Nyquist
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Gain and Phase Margins : Nyquist

—1.5

Gain margin = —201log,, a = 9.63dB
System becomes unstable at a gain of 1/a = 3.03



Gain and Phase Margins : Nyquist




Gain and Phase Margins : Nyquist

Phase margin = 108 degrees



Gain and Phase Margins : Bode

Magnitude (dB)
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Gain and Phase Margins : Bode

Gain
Margin -~ 1

-100

-200

Phase
-300p Margin

Phase (degrees)

10° 10' 10° 10°
Frequency (rad/s)

Choose the ‘first to be unstable’ if there are multiple crossings




Margins - Summary

- Margins measure how far from stability the closed-loop system is in terms of a
single uncertain parameter

- Phase
- Gain
- Delay
- Many applications specify minimum phase and gain margins for safety

- In later lectures we will look at dynamic controllers that shape the frequency
response so that we have good margins



Steady State Errors



Steady-State Offset
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Steady-State Offset

3.4
(s) e K(s)=1
1.5
1 /\\/\ Closed-loop step response
0.5 |- N
0 /\/\ | |
0 A2 4 g Eror—g 10 12

Time (s)

Stable does not mean that the output tracks the reference!



Steady-State Offset

R(s) —+O—] K (&) ] GE) |—— ¥(5) G .
1 BEG) = i xkmam T
= S(s)R(s)

Final Value Theorem

lim w(t) = lim sW(s)

t—o00 s—0

If poles of sW (s) are in the left half plane

Ifr(t) =1,¢t >0, then R(S) = 1/s

=777

. . 1 1
Am e() = I s oaGm) s~ A T Rs)a0s)

- Not infinite because K (s)G(s) # —1
- Called this the steady-state offset or steady-state error
- Conditions for the steady-state offset to be zero?



System Type and Open-Loop Steady-State Gain

Suppose that the open-loop transfer function has ¢ poles at s =0

B(s)

K(s)G(s) = STA(S)

where A and B are polynomials.

The number q is called the type or the class of the open-loop system.

The open-loop steady-state gain of the system K (s)G(s) is
. B(0)
— q —
o= lln[l)s K(s)G(s) = 0)



Type 0 System Response to a Step Command

Suppose we have a type 0 system

and we apply a step input



Type 0 System Response to a Step Command

Suppose we have a type 0 system

B(s
K(s)G(s) = AES;
and we apply a step input
R(s) = +

The steady-state error for the closed-loop system will be

lim e(t) = lim s ————— - 1

t—» o0 s—0 1 +K(S)G(S) S



Type 1 System Response to a Step Command

Suppose we have a type 1 system

B(s
K(s)G(s) = SA((S))
and we apply a step input
1
R(s) = 5



Type 1 System Response to a Step Command

Suppose we have a type 1 system

B(s
K(s)G(s) = SA((S))
and we apply a step input
1
R(s) = 5

The steady-state error for the closed-loop system will be

lim e(t) = lim s—— .1
e T INT TR (5)G(s) s
= lim
s—=0 g + ﬁgf;
=0

The steady-state error will be zero for all step inputs and systems!



Type 1 System Response to a Step Command

1.5 T
Closed-loop step response

0.5 .

Error

0 | \/\ | A | |
0 2N 6 8 10 12 14 16 18 20

Time (s)

Zero steady-state offset



Type 1 System Response to a Ramp Command

Suppose we have a type 1 system

_ B(s)
K(s)G(s) = SA(s)
and we apply a ramp input r(t) =t
1

20



Type 1 System Response to a Ramp Command

Suppose we have a type 1 system

B(s
K(s)G(s) = SA((S))
and we apply a ramp input r(t) =t
1
R(s) = 2

The steady-state error for the closed-loop system will be

lim e(t) = lim s 1
t—o00 C 00 14+ K(s)G(s) s?
= lim -

s

s—0 1 + Si((?)

Non-zero steady-state error.

20



Type 1 System Response to a Ramp Command

3.4 1 1
G(s)—752+8+1 K(s)—g(l-i-g)
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Constant steady-state offset
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Type 1 System Response to a Ramp Command

3.4 1 1
6= Fs+1 K<5>—3(1+;)
10
8 [
6 [
Ramp input

4 ~C Closed-loop
5| step response |
0 A/\ | | | | | | |

0 1 2 3 4 5 6 7 8 9 10

Constant steady-state offset

21



Type 1 System Response to a Parabolic Command

Suppose we have a type 1 system

_ B(s)
K(S)G(S) - SA(S)
and we apply a parabolic input r(t) = t
2

22



Type 1 System Response to a Parabolic Command

Suppose we have a type 1 system

R(s) = g
The error is
1 2
B =Rk &
_ sBls) 2
"~ sA(s) + B(s) s?
B(s) 2

T SA(s)+ B(s) s2

Cannot apply final-value theorem because there is more than one pole at 0
— Implies that the error is either unbounded, or oscillates

22



Type 1 System Response to a Parabolic Command

50

40 - .
301 Parabolic input

20 - s

Closed-loop step response
10 |- s
0 | |
0 1 2 3 4 5 6 7 8 9 10

Infinite steady-state offset

23



Type 1 System Response to a Parabolic Command

50

40 n
301 Parabolic input |
20 |- n

Closed-loop step response Error
10 - n
0 | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Time (s)

Infinite steady-state offset

23



Steady-State Errors by System Type

0 —_— 00 00
14~
1
1 0 — o]
”
2 0 0 l
Y

Basic idea: Must have more integrators than the signal you're trying to track

Why not just add hundreds of integrators, and track anything?!

24



Steady-State Errors by System Type - by the Book

The book uses a slightly different notation:

Type r(t) =1 r(t) =t r(t) =t°
Step (position) Ramp (velocity) Parabola (acceleration)
1
0 11K, 00 00
1 0 KLU olo
2 0 0 K.
K, = liII(l) K(s)G(s) Type 0
K, = Sh_I)I(l) sK(s)G(s) Type 1
K, = lim s*K(s)G(s) Type 2

5—0

The book differentiates constants between position, velocity and acceleration. We
just use ~ for all of them.

25



Negative Impact of Adding Integrators
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Negative Impact of Adding Integrators

Magnitude (dB)

Phase (deg)
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Negative Impact of Adding Integrators
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Negative Impact of Adding Integrators

How do the two systems differ in terms of stability margins?
G(s)
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Negative Impact of Adding Integrators

How do the two systems differ in terms of stability margins?

G(s) VS Gls)
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Negative Impact of Adding Integrators

How do the two systems differ in terms of stability margins?

G(s) VS Gls)

s4

80

40

0
—40
—80
—120
~160 | Lol Lol Lol ol

90 T T TTTTT] T T TTTTTT T T TTTTT] T T TTTTIT T T TTTTIT T T T 117171

0 -
—90 ]
—180
—270
—360 Lol Lol Lol Lol —_—
10" 10°? 1072 10" 10° 10* 10°

Frequency rad/sec

Magnitude (dB)

Phase (deg)

27



Negative Impact of Adding Integrators

How do the two systems differ in terms of stability margins?

G(s) VS Gls)
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Constant Disturbance Rejection




Constant Disturbance Rejection

Wis)
Fl(s l
Rs) —O— K@) —O—] 6l - Y (s)

System response with respect to a disturbance w(t) is:

G(s)

T I Reem

What are the conditions for zero steady-state offset with respect to a constant
disturbance?

28



Constant Disturbance Rejection

Suppose the system has ¢ integrators, and K has none

_ B
S1A(s)

G(s)

29



Constant Disturbance Rejection

Suppose the system has ¢ integrators, and K has none

_ B(s)
s1A(s)

G(s)

The error is:

Then the steady—state error is:
i (s) 1
SIH%)SM S) = 7(0)

Integrators in the system do not reject disturbances!

29



Integrators in the Controller

Suppose the controller K has r integrators

S(s)

K(s) = sTR(s)

30



Integrators in the Controller

Suppose the controller K has r integrators

The error is:

The controller's integrators do reject the disturbance:

- One pole at 0 — rejects constant disturbance
- Two poles at 0 — rejects ramp disturbance

- etc

30



1
= K(s) =
) = (s)=5
- System has an integrator
- Controller doesn't
1.5 (o
R(s)
e
1 \//—\
E(s)
0.5 W (s) .
0 | | | | |
0 2 4 6 8 10 12

31



- System doesn’t have an integrator
- Controller does (PI)

1.5 T T T
Y(s)
/\ R(s)
1 ~—
0.5 e .
W(s)
0 | | ‘/ | R
0 2 ~—_—71 6 8 10 12

32



Waterbed Effect




Dynamic Disturbance Rejection

We want to reject ‘complex’ signals.

Consider a sinusoid
r(t) = sin(wt) ,

or a mix of sinusoids.

The rejection of these signals, or the sensitivity to them, is given by the sensitivity
function

1

1T KGw)GGw) = |S(jw)|

33



Limitations of Disturbance Rejection

Theorem Bode’s Integral Formula

Assume we have a closed-loop stable system with open-loop unstable poles p;,
i = 1,2,...,P and a strictly proper open-loop transfer function K(s)G(s). The
sensitivity function satisfies the condition

| 10g1SGw)ldw = 73 Re(r)

=1

This is a fundamental limit on how well the system can perform:

- If we damp noise for some frequencies |S(jw)| < 1, then we must amplify it
|S(jw)| > 1 at others!

- This is called the waterbed effect

- Harder to get good disturbance rejection behaviour out of unstable systems
(those with many unstable poles)
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s% — 133.3s + 5926
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K(s)G(s) = Kp (5 + 1)(s% + 133.35 + 5926)

r T

-10

Magnitude (dB)

-15 L - . -

107 1072 10" 10’
Freq

K,=1 max S(jw) = 0.4dB

35



s% — 133.3s + 5926
=K
K(s)G(s) = Kp (5 + 1)(s% + 133.35 + 5926)
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s” — 133.3s + 5926
K(s s) =K
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Robustness:  The farther the ‘nominal’ Nyquist curve is from the —1 point, the
more likely the real system will be stable.

“Margins” measure how far your system is from unstable

- Gain margin
- Phase margin

- Delay margin
Steady-state offset

- Need to have as many integrators in your controller as are in the signal to track
/ reject if you want zero steady-state error

Waterbed effect

- There is a fundamental limit to how well a controller can work

- Cannot improve noise rejection / tracking at all frequencies

36
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