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Uncertain Delay

Designed for system G(s), but system in real-world G′(s) = G(s)e−s
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• Impact of delay : Phase delay of −ω

• Original system is stable, delayed system is not
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Example - Uncertain Gain

Design for system G(s), but in real-world we get G′(s) = αG(s)
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Robustness

The idea: The farther the ‘nominal’ Nyquist curve is from the −1 point, the more
likely the real system will be stable.

The various margins measure distance in terms of some common terms:

• Uncertain gain
• Uncertain phase
• Uncertain delay

4



Gain Margin

The gain margin is the number 1/a, where

a = min
ω

K(jω)G(jω)

s.t. ImK(jω)G(jω) = 0

i.e., smallest negative crossing of the real axis
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• Expressed in decibels

−20 log10 a > 0

• Amount that gain can
increase while stable

• Between 4dB and 12dB
generally considered safe

• GM < 1 (0dB) means that the
closed-loop system is
unstable, GM > 1 (0dB) that it
is stable
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Phase Margin

The phase margin ϕ is the smallest increase in
phase that will cause instability

ϕ = min
ϕ,ω

ϕ

s.t. K(jω)G(jω)ejϕ = −1

• Usually expressed in degrees
• Between 30◦ and 60◦

generally considered safe
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Phase and Gain Margin on Bode Plot
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Phase and Gain Margin on Bode Plot
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Phase and Gain Margin on Bode Plot

Procedure:

1. Find frequency ωc that system passes 0dB, from magnitude plot
2. Find frequency ωx that system passes −180◦, from the phase plot
3. Gain margin = −20 log10 |K(jωx)G(jωx)|dB
4. Phase margin = ∠K(jωc)G(jωc)− 180 in degrees

Gain and phase margin positive→ stable
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Example: AFM

G(s) =
8.88 · 108(s2 + 780s+ 1.69 · 106)

(s+ 3000)(s+ 1000)(s+ 100)(s2 + 50s+ 6.25 · 106)

K(s) = K ·
(
1 +

1

s

)
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Example: AFM

G(s) =
8.88 · 108(s2 + 780s+ 1.69 · 106)
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System becomes unstable somewhere between K = 3 and K = 3.05 9



Gain and Phase Margins : Nyquist
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Gain and Phase Margins : Nyquist
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Gain margin = −20 log10 a = 9.63dB

System becomes unstable at a gain of 1/a = 3.03
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Gain and Phase Margins : Nyquist
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Gain and Phase Margins : Nyquist
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Gain and Phase Margins : Bode
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Gain and Phase Margins : Bode
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Choose the ‘first to be unstable’ if there are multiple crossings
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Margins - Summary

• Margins measure how far from stability the closed-loop system is in terms of a
single uncertain parameter

• Phase
• Gain
• Delay

• Many applications specify minimum phase and gain margins for safety
• In later lectures we will look at dynamic controllers that shape the frequency
response so that we have good margins
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Steady State Errors



Steady-State Offset

G(s) =
3.4

s2 + s+ 1
K(s) = 1
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s2 + s+ 1
K(s) = 1

0 2 4 6 8 10 12
0

0.5

1

1.5

Closed-loop step response

Error

Time (s)

Stable does not mean that the output tracks the reference!
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Steady-State Offset

R(s) K(s) G(s) Y (s)
− E(s) =

1

1 +K(s)G(s)
R(s)

= S(s)R(s)

Theorem
Final Value Theorem

lim
t→∞

w(t) = lim
s→0

sW (s)

If poles of sW (s) are in the left half plane

If r(t) = 1, t ≥ 0, then R(S) = 1/s

lim
t→∞

e(t) = lim
s→0

s
1

1 +K(s)G(s)
· 1
s
= lim

s→0

1

1 +K(s)G(s)
=???

• Not infinite because K(s)G(s) ̸= −1

• Called this the steady-state offset or steady-state error
• Conditions for the steady-state offset to be zero? 15



System Type and Open-Loop Steady-State Gain

Suppose that the open-loop transfer function has q poles at s = 0

K(s)G(s) =
B(s)

sqA(s)

where A and B are polynomials.

The number q is called the type or the class of the open-loop system.

The open-loop steady-state gain of the system K(s)G(s) is

γ := lim
s→0

sqK(s)G(s) =
B(0)

A(0)
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Type 0 System Response to a Step Command

Suppose we have a type 0 system

K(s)G(s) =
B(s)

A(s)

and we apply a step input

R(s) =
1

s

The steady-state error for the closed-loop system will be

lim
t→∞

e(t) = lim
s→0

s
1

1 +K(s)G(s)
· 1
s

=
1

1 + γ
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Type 1 System Response to a Step Command

Suppose we have a type 1 system

K(s)G(s) =
B(s)

sA(s)

and we apply a step input

R(s) =
1

s

The steady-state error for the closed-loop system will be

lim
t→∞

e(t) = lim
s→0

s
1

1 +K(s)G(s)
· 1
s

= lim
s→0

s

s+ B(s)
A(s)

= 0

The steady-state error will be zero for all step inputs and systems!
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Type 1 System Response to a Step Command

G(s) =
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Type 1 System Response to a Ramp Command

Suppose we have a type 1 system

K(s)G(s) =
B(s)

sA(s)

and we apply a ramp input r(t) = t

R(s) =
1

s2

The steady-state error for the closed-loop system will be

lim
t→∞

e(t) = lim
s→0

s · 1

1 +K(s)G(s)
· 1

s2

= lim
s→0

1

1 + B(s)
sA(s)

· 1
s

=
1

γ

Non-zero steady-state error.
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Type 1 System Response to a Ramp Command
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Type 1 System Response to a Parabolic Command

Suppose we have a type 1 system

K(s)G(s) =
B(s)

sA(s)

and we apply a parabolic input r(t) = t2

R(s) =
2

s3

The error is

E(s) =
1

1 +K(s)G(s)
· 2

s3

=
sB(s)

sA(s) +B(s)
· 2

s3

=
B(s)

sA(s) +B(s)
· 2

s2

Cannot apply final-value theorem because there is more than one pole at 0
→ Implies that the error is either unbounded, or oscillates
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Type 1 System Response to a Parabolic Command
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Type 1 System Response to a Parabolic Command
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Steady-State Errors by System Type

Type r(t) = 1 r(t) = t r(t) = t2

0
1

1 + γ
∞ ∞

1 0
1

γ
∞

2 0 0
1

γ

Basic idea: Must have more integrators than the signal you’re trying to track

Why not just add hundreds of integrators, and track anything?!

24



Steady-State Errors by System Type - by the Book

The book uses a slightly different notation:

Type r(t) = 1 r(t) = t r(t) = t2

Step (position) Ramp (velocity) Parabola (acceleration)
0

1

1 +Kp
∞ ∞

1 0
1

Kv
∞

2 0 0
1

Ka

Kp = lim
s→0

K(s)G(s) Type 0

Kv = lim
s→0

sK(s)G(s) Type 1

Ka = lim
s→0

s2K(s)G(s) Type 2

The book differentiates constants between position, velocity and acceleration. We
just use γ for all of them.
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Negative Impact of Adding Integrators
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Negative Impact of Adding Integrators

How do the two systems differ in terms of stability margins?

G(s) vs G(s)

sq
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Constant Disturbance Rejection



Constant Disturbance Rejection

R(s) K(s)

W (s)

G(s) Y (s)
E(s)

−

System response with respect to a disturbance w(t) is:

E(s) =
G(s)

1 +K(s)G(s)
W (s)

What are the conditions for zero steady-state offset with respect to a constant
disturbance?

28



Constant Disturbance Rejection

Suppose the system has q integrators, and K has none

G(s) =
B(s)

sqA(s)

The error is:

E(s) =
G(s)

1 +K(s)G(s)
W (s)

=
B(s)

sqA(s) +K(s)B(s)
· 1
s

Then the steady-state error is:

lim
s→0

sE(s) =
1

K(0)

Integrators in the system do not reject disturbances!
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Integrators in the Controller

Suppose the controller K has r integrators

K(s) =
S(s)

srR(s)

The error is:

E(s) =
B(s)

sqA(s) +K(s)B(s)
· 1
s

= sr
B(s)R(s)

srsqA(s)R(s) + S(s)B(s)
· 1
s

The controller’s integrators do reject the disturbance:

• One pole at 0 → rejects constant disturbance
• Two poles at 0 → rejects ramp disturbance

•
...

• etc
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Example

G(s) =
1

s(s+ 1)
K(s) = 5

• System has an integrator
• Controller doesn’t
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Example

G(s) =
1

s+ 1
K(s) = 0.1 +

2.2

s

• System doesn’t have an integrator
• Controller does (PI)
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Waterbed Effect



Dynamic Disturbance Rejection

We want to reject ‘complex’ signals.

Consider a sinusoid

r(t) = sin(ωt) ,

or a mix of sinusoids.

The rejection of these signals, or the sensitivity to them, is given by the sensitivity
function ∣∣∣∣ 1

1 +K(jω)G(jω)

∣∣∣∣ = |S(jω)|
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Limitations of Disturbance Rejection

Theorem Bode’s Integral Formula

Assume we have a closed-loop stable system with open-loop unstable poles pi,
i = 1, 2, . . . , P and a strictly proper open-loop transfer function K(s)G(s). The
sensitivity function satisfies the condition∫ ∞

0

log |S(jω)|dω = π
P∑

i=1

Re(pi)

This is a fundamental limit on how well the system can perform:

• If we damp noise for some frequencies |S(jω)| < 1, then we must amplify it
|S(jω)| > 1 at others!

• This is called the waterbed effect
• Harder to get good disturbance rejection behaviour out of unstable systems
(those with many unstable poles)
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Example

K(s)G(s) = Kp
s2 − 133.3s+ 5926

(s+ 1)(s2 + 133.3s+ 5926)
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Example
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Example

K(s)G(s) = Kp
s2 − 133.3s+ 5926
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Summary

Robustness: The farther the ‘nominal’ Nyquist curve is from the −1 point, the
more likely the real system will be stable.

“Margins” measure how far your system is from unstable

• Gain margin
• Phase margin
• Delay margin

Steady-state offset

• Need to have as many integrators in your controller as are in the signal to track
/ reject if you want zero steady-state error

Waterbed effect

• There is a fundamental limit to how well a controller can work
• Cannot improve noise rejection / tracking at all frequencies
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